Algebra 1 Readiness Intervention Lessons Readiness Standard 5 - 8.EE.2 Learning Target: I will solve non-linear equations using square roots and cube roots Readiness for A.REI.4: Factor quadratic equations #### **Table of Contents** **Learning Target:** I will solve non-linear equations using square roots and cube roots. | High Scho | oi Planning Guide | p. s | |-----------|--|----------| | Session 1 | Whole Group: Analyze solved problems to solve non-linear equations using repeated multiplication. Pairs: Record the missing parts of incomplete problems. Individual: Quick Check – Form A | p. 4 | | Session 2 | Whole Group: Analyze solved problems to solve non-linear equations using repeated multiplication. Pairs: Record the missing parts of incomplete problems. Individual: Quick Check – Form B | p. 10 | | Session 3 | Whole Group: Analyze solved problems to solve non-linear equations using square roots and cube roots. Pairs: Gradual release to record the full solution. Individual: Quick Check – Form C | p. 15 | | Session 4 | Whole Group: Analyze solved problems to solve non-linear equations using square roots and cube roots. Pairs: Record the full solution. Individual: Quick Check – Form D | p. 20 | | Additiona | I Quick Checks: Forms E through H | p. 25-28 | #### **IES Recommendations for Improving Algebra Knowledge:** #### Recommendation - 1. Use solved problems to engage students in analyzing algebraic reasoning and strategies. - 2. Teach students to utilize the structure of algebraic representations. - 3. Teach students to intentionally choose from alternative algebraic strategies when solving problems. (Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students, 2015, p. 3) # **High School Planning Guide** Algebra 1 - Readiness Standard 5 - 8.EE.2 | Recommended Actions ≈ 30 minutes | | | | | |----------------------------------|--|--|--|--| | Beginning
(5 min.) | Review the learning target with the whole group. For sessions 2, 3 and 4, ask each student to set a personal goal for the day based on their previous Quick Check Score and use a highlighter to plot their goal on their Growth Chart. | | | | | Middle
(15 min.) | Guided Practice Whole Group (Analyze solved problems) The teacher covers up all solution steps except the first two. The teacher asks, "What math happened?" and elicits student responses to fill in the missing information. The teacher answers student questions to clarify the solution step. The teacher uncovers the next answer blank and repeats the analysis. Pairs (Gradual release to solve problems) Students take turns leading to "think aloud" while completing each problem. | | | | | End (10 min.) | Reflect, Assess and Monitor Progress Ask students to reflect on their progress towards the learning target. What did I learn today about the learning target? How confident do I feel about doing the learning target on my own? Assess each student's progress using a Quick Check. Guide students to self-correct their Quick Check. Guide students to chart their progress in their Growth Chart. If not using Delta Math lessons, record the activity in the table. Collect each student's Quick Check and Growth Chart. | | | | | After | > Exit students who meet or exceed the learning goal for a third time. | | | | Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### **Session 1: Guided Practice (Whole Group)** | Write | Describe | |--|---| | 1. Solve: $x^2 = 81$ | | | $x \bullet x = 81$ | Changed to Repeated Multiplication $x \cdot x = \underline{\hspace{1cm}}$ to eliminate the exponent | | $x \bullet x = 9 \bullet 9$ or $x \bullet x = -9 \bullet -9$ | Found Possible Values of x
9 • 9 and -9 • -9 = | | x = 9 or $x = -9$ | Wrote the Solutions $x = \pm 9$ means $x = \underline{\hspace{1cm}}$ or $x = \underline{\hspace{1cm}}$ | | $x = \pm 9$ | | | 2. Solve: $x^3 = -125$ | | | $x \bullet x \bullet x = -125$ | Changed to Repeated Multiplication $x \cdot x \cdot x = $ to eliminate the exponent | | $x \bullet x \bullet x = -5 \bullet -5 \bullet -5$ | Found a number multiplied by itself 3 times equal to -125
-5 • -5 • -5 = | | x = -5 | Wrote the Solution $x =$ | | 3. Solve: $x^2 = \frac{9}{16}$ | | | $x \bullet x = \frac{9}{16}$ | Changed to Repeated Multiplication $x \bullet x = \underline{\hspace{1cm}} \text{to eliminate the exponent}$ | | $x \bullet x = \frac{3}{4} \bullet \frac{3}{4}$ or $x \bullet x = -\frac{3}{4} \bullet -\frac{3}{4}$ | Found a number multiplied by itself equal to $\frac{9}{16}$? $\frac{3}{4} \bullet \frac{3}{4} \text{ and } -\frac{3}{4} \bullet -\frac{3}{4} = \underline{\hspace{1cm}}$ | | $x = \frac{3}{4}$ or $x = -\frac{3}{4}$ | Wrote Both Possible Solutions $x = \pm \frac{3}{4} \text{ means } x = \underline{\hspace{1cm}} \text{ or } x = \underline{\hspace{1cm}}$ | | $x = \pm \frac{3}{4}$ | | Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### **Session 1: Guided Practice (Pairs)** **Directions:** Complete the missing steps to solve each non-linear equation. 4. $$x^2 = 49$$ $$x \bullet x = 49$$ $$x \bullet x = \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}}$$ or $x \bullet x = \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}}$ $$x =$$ ___ or $x =$ ___ $$x = +$$ 5. $$x^2 = 64$$ $$x \bullet x = 64$$ $$x \bullet x = \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}} \text{ or } x \bullet x = \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}}$$ $$x =$$ 6. $$x^2 = 225$$ $$x \bullet x = \underline{\hspace{1cm}}$$ $$x \bullet x = \underline{\hspace{1cm}}$$ or $x \bullet x = \underline{\hspace{1cm}}$ $$x =$$ ____ or $x =$ ____ $$x = \pm 15$$ $$x^2 = 144$$ $$x \bullet x = 12 \bullet 12$$ or _____ 8. $$x^2 = \frac{16}{121}$$ $$x \bullet x = \frac{16}{121}$$ $$x \bullet x =$$ or $x \bullet x = -\frac{4}{11} \bullet -\frac{4}{11}$ $$x =$$ or $x =$ $$x = \pm \frac{4}{11}$$ $$x^2 = \frac{100}{36}$$ $$x \bullet x = \frac{100}{36}$$ _____ or $$x = -\frac{10}{6}$$ $$x = \underline{\hspace{1cm}}$$ Date **Learning Target:** I will solve non-linear equations using Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations ## Session 1: Guided Practice (Teacher Notes) | Write | Describe | |--|--| | 1. Solve: $x^2 = 81$ | | | $x \bullet x = 81$ | Changed to Repeated Multiplication $x \cdot x = x^2$ to eliminate the exponent | | $x \bullet x = 9 \bullet 9$ or $x \bullet x = -9 \bullet -9$ | Found a number multiplied by itself equal to 81? $9 \cdot 9$ and $-9 \cdot -9 = 81$ | | x = 9 or $x = -9$ | Wrote Both Possible Solutions $x = \pm 9$ means $x = +9$ or $x = -9$ | | $x = \pm 9$ | | | 2. Solve: $x^3 = -125$ | | | $x \bullet x \bullet x = -125$ | Changed to Repeated Multiplication $x \cdot x \cdot x = x^3$ to eliminate the exponent | | $x \bullet x \bullet x = -5 \bullet -5 \bullet -5$ | Found a number multiplied by itself 3 times equal to -125 $-5 \cdot -5 \cdot -5 = -125$ | | x = -5 | Wrote the Solution $x = -5$ | | 3. Solve: $x^2 = \frac{9}{16}$ | | | $x \bullet x = \frac{9}{16}$ | Changed to Repeated Multiplication $x \bullet x = x^2$ to eliminate the exponent | | $x \cdot x = \frac{3}{4} \cdot \frac{3}{4}$ or $x \cdot x = -\frac{3}{4} \cdot -\frac{3}{4}$ | Found a number multiplied by itself equal to $\frac{9}{16}$? $\frac{3}{4} \bullet \frac{3}{4}$ and $-\frac{3}{4} \bullet -\frac{3}{4} = \frac{9}{16}$ | | $x = \frac{3}{4}$ or $x = -\frac{3}{4}$ | Wrote Both Possible Solutions $x = \pm \frac{3}{4} \text{ means } x = \frac{3}{4} \text{ or } x = \frac{3}{4}$ | | $x = \pm \frac{3}{4}$ | | #### **Session 1: Self-Reflection** Algebra 1 - Readiness Standard 5 - 8.EE.2 Learning Target: I will solve non-linear equations using square roots and cube roots Briefly discuss student responses - ➤ What did I learn today about solving non-linear equations? - ➤ How confident do I feel about solving non-linear equations on my own? (Thumbs up, down, or sideways) #### Algebra 1 Quick Check – Form A Readiness Standard 5 - 8.EE.2 Name_____ Date____ **Learning Target:** I will solve non-linear equations using square roots and cube roots. Directions: Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 9$$ $$x^2 = 36$$ 18 3. $$x^3 = 125$$ $$x^3 = -27$$ -9 $$x^2 = \frac{16}{36}$$ $$x^2 = \frac{81}{49}$$ $$-\frac{4}{6}$$ $$\frac{4}{6}$$ $$\pm \frac{4}{6}$$ $$\pm \frac{8}{18}$$ $$\pm \frac{9}{7}$$ $$\pm \frac{9}{49}$$ #### **Algebra 1 Growth Chart** Readiness Standard 5 - 8.EE.2 **Learning Target:** I will solve non-linear equations using square roots and cube roots. Goal: 5 out of 6 correct | Intervention Notes | Date | Score | |--------------------|------|-------| Date _____ **Learning Target:** I will solve non-linear equations using Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations # **Session 2: Guided Practice (Whole Group)** | Write | Describe | |---|---| | 1. Solve: $x^3 = 8$ | | | $x \bullet x \bullet x = 8$ | Changed to Repeated Multiplication $x \bullet x \bullet x = $ to eliminate the exponent | | $x \bullet x \bullet x = 2 \bullet 2 \bullet 2$ | Found a number multiplied by itself 3 times equal to 8 $2 \bullet -2 \bullet 2 = \underline{\hspace{1cm}}$ | | x = 2 | Wrote the Solution $x =$ | | 2. Solve: $x^2 = 25$ | | | $x \bullet x = 25$ | Changed to Repeated Multiplication $x \bullet x = \underline{\hspace{1cm}}$ to eliminate the exponent | | $x \cdot x = 5 \cdot 5$ or $x \cdot x = -5 \cdot -5$ | Found a number multiplied by itself equal to 25? 5 • 5 and -5 • -5 = | | x = 5 or $x = -5$ | Wrote Both Possible Solutions $x = \pm 5$ means $x = _$ or $x = _$ | | $x = \pm 5$ | | | 3. Solve: $x^3 = \frac{27}{64}$ | | | $x \bullet x \bullet x = \frac{27}{64}$ | Changed to Repeated Multiplication $x \bullet x \bullet x = $ to eliminate the exponent | | $x \bullet x \bullet x = \frac{3}{4} \bullet \frac{3}{4} \bullet \frac{3}{4}$ | Found a number multiplied by itself equal to $\frac{27}{64}$? $\frac{3}{4} \bullet \frac{3}{4} \bullet \frac{3}{4} = \underline{\hspace{1cm}}$ | | $x = \frac{3}{4}$ | Wrote the Solutions x = | Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### **Session 2: Guided Practice (Pairs)** **Directions:** Complete the missing steps to solve each non-linear equation **4.** Solve: $$x^3 = 27$$ $$x \bullet x \bullet x = 27$$ $$x \bullet x \bullet x = 3 \bullet \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}}$$ $$x =$$ **5.** Solve: $$x^3 = 125$$ $$x \bullet x \bullet x = \underline{\hspace{1cm}}$$ $$x \bullet x \bullet x = \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}}$$ $$x =$$ **6.** Solve: $$x^3 = 216$$ $$x \bullet x \bullet x = 216$$ $$x \bullet x \bullet x = \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}}$$ $$x = 6$$ **7.** Solve: $$x^3 = -64$$ $$x \bullet x \bullet x = \underline{\hspace{1cm}}$$ $$x \bullet x \bullet x = \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}}$$ $$x =$$ **8.** Solve: $$x^3 = \frac{8}{1000}$$ $$x \bullet x \bullet x = \frac{8}{1000}$$ $$x \bullet x \bullet x = ---- \bullet ---- \bullet$$ $$x = ---$$ **9.** Solve: $$x^3 = -\frac{343}{27}$$ $$x \bullet x \bullet x = -$$ $$x \bullet x \bullet x = - - - - - - - - -$$ $$x = -\frac{7}{3}$$ Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### Session 2: Guided Practice (Teacher Notes) | Write | Describe | |---|--| | 1. Solve: $x^3 = 8$ | | | $x \bullet x \bullet x = 8$ | Changed to Repeated Multiplication $x \bullet x \bullet x = x^3$ to eliminate the exponent | | $x \bullet x \bullet x = 2 \bullet 2 \bullet 2$ | Found a number multiplied by itself 3 times equal to 8 $2 \cdot -2 \cdot 2 = 8$ | | x = 2 | Wrote the Solution $x = 2$ | | 2. Solve: $x^2 = 25$ | | | $x \cdot x = 25$ | Changed to Repeated Multiplication $x \cdot x = x^2$ to eliminate the exponent | | $x \bullet x = 5 \bullet 5$ or $x \bullet x = -5 \bullet -5$ | Found a number multiplied by itself equal to 25?
$5 \cdot 5$ and $-5 \cdot -5 = 25$ | | x = 5 or $x = -5$ | Wrote Both Possible Solutions $x = \pm 5$ means $x = +5$ or $x = -5$ | | $x = \pm 5$ | | | 3. Solve: $x^3 = \frac{27}{64}$ | | | $x \bullet x \bullet x = \frac{27}{64}$ | Changed to Repeated Multiplication $x \cdot x \cdot x = x^3$ to eliminate the exponent | | $x \bullet x \bullet x = \frac{3}{4} \bullet \frac{3}{4} \bullet \frac{3}{4}$ | Found a number multiplied by itself equal to $\frac{27}{64}$? $\frac{3}{4} \bullet \frac{3}{4} \bullet \frac{3}{4} = \frac{27}{64}$ | | $x = \frac{3}{4}$ | $4 4 4 64$ Wrote the Solutions $x = \frac{3}{4}$ | #### **Session 2: Self-Reflection** Algebra 1 – Readiness Standard 5 – 8.EE.2 Learning Target: I will solve non-linear equations using square roots and cube roots Briefly discuss student responses - ➤ What did I learn today about solving non-linear equations? - ➤ How confident do I feel about solving non-linear equations on my own? (*Thumbs up, down, or sideways*) ## Algebra 1 Quick Check – Form B Readiness Standard 5 - 8.EE.2 | Name | Date | |------|------| | | | **Learning Target:** I will solve non-linear equations using square roots and cube roots. Directions: Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 100$$ $$x^2 = 25$$ ±50 3. $$x^3 = -8$$ $$x^3 = 216$$ 72 $$x^2 = \frac{64}{25}$$ $$x^2 = \frac{9}{36}$$ $$-\frac{8}{25}$$ $$\pm \frac{8}{5}$$ $$\pm \frac{32}{12.5}$$ $$\pm \frac{3}{36}$$ $$\frac{3}{18}$$ $$\pm \frac{3}{6}$$ Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### **Session 3: Guided Practice (Whole Group)** | | Write | Describe | |-----------|---------------------------------------|--| | 1. Solve: | $x^2 = 81$ | | | | $\sqrt{x^2} = \sqrt{81}$ | Took the square root of each side $\sqrt{x^2} = \underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | | | $x = \pm 9$ | Simplified each radical $\sqrt{81} = \sqrt{\underline{} \bullet \underline{} }$ or $\sqrt{\underline{} \bullet \underline{} }$ | | 2. Solve: | $x^3 = -64$ | | | | $\sqrt[3]{x^3} = \sqrt[3]{-64}$ | Since $\sqrt{x^3} = \underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | | | x = -4 | Simplified each radical $\sqrt{-64} = \sqrt{\underline{} \bullet \underline{} \bullet \underline{} \bullet \underline{}$ | | 3. Solve: | $x^2 = \frac{9}{25}$ | | | | $\sqrt{\chi^2} = \sqrt{\frac{9}{25}}$ | Took the square root of each side $\sqrt{x^2} = \sqrt{\underline{} - \underline{} = \underline{} = \underline{}$ to eliminate the exponent | | | $x = \pm \frac{3}{5}$ | Simplified each radical $\sqrt{\frac{9}{25}} = $ | Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### **Session 3: Guided Practice (Pairs)** **Directions:** Complete the missing steps to solve each non-linear equation. 4. $$x^2 = 49$$ $$\sqrt{x^2} = \sqrt{}$$ $$\sqrt{x^2} = \sqrt{\underline{} \bullet \underline{}} \text{ or } \sqrt{\underline{\underline{}} \bullet \underline{\underline{}}}$$ $$x = \pm \underline{\hspace{1cm}}$$ $$x^2 = 64$$ $$x^3 = 125$$ $$\sqrt[3]{x^3} = \sqrt[3]{}$$ $$\sqrt[3]{\chi^3} = \sqrt{\underline{} \bullet \underline{} \bullet \underline{} \bullet \underline{}$$ $$x = \underline{\hspace{1cm}}$$ $$x^3 = -27$$ $$x^2 = \frac{16}{81}$$ $$\sqrt{x^2} = \sqrt{-}$$ $$x = \pm -$$ $$x^3 = \frac{64}{8}$$ Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### Session 3: Guided Practice (Teacher Notes) | | Write | Describe | |------------------|------------------------------------|---| | 1. Solve: | $x^2 = 81$ | | | | $\sqrt{x^2} = \sqrt{81}$ | Took the square root of each side $\sqrt{x^2} = \sqrt{x \cdot x} = x$ to eliminate the exponent | | | $x = \pm 9$ | Simplified each radical $\sqrt{81} = \sqrt{9 \cdot 9}$ or $\sqrt{-9 \cdot -9}$ | | 2. Solve: | $x^3 = -64$ | | | | $\sqrt[3]{x^3} = \sqrt[3]{-64}$ | Took the cube root of each side Since $\sqrt{x^3} = \sqrt{x \cdot x \cdot x} = x$ to eliminate the exponent | | | x = -4 | Simplified each radical $\sqrt{81} = \sqrt{4 \cdot 4 \cdot 4}$ or $\sqrt{-4 \cdot -4} \cdot -4$ | | 3. Solve: | $x^2 = \frac{9}{25}$ | | | | $\sqrt{x^2} = \sqrt{\frac{9}{25}}$ | Took the square root of each side $\sqrt{x^2} = \sqrt{x \bullet x} = x$ to eliminate the exponent | | | $x = \pm \frac{3}{5}$ | Simplified each radical $\sqrt{\frac{9}{25}} = \sqrt{\frac{3}{5}} \cdot \frac{3}{5} \text{ or } \sqrt{-\frac{3}{5}} \cdot -\frac{3}{5}$ | #### **Session 3: Self-Reflection** Algebra 1 - Readiness Standard 5 - 8.EE.2 Learning Target: I will solve non-linear equations using square roots and cube roots Briefly discuss student responses - ➤ What did I learn today about solving non-linear equations? - ➤ How confident do I feel about solving non-linear equations on my own? (Thumbs up, down, or sideways) ## Algebra 1 Quick Check – Form C Readiness Standard 5 - 8.EE.2 | Name | Date | |------|------| | | | **Learning Target:** I will solve non-linear equations using square roots and cube roots. Directions: Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 16$$ $$x^2 = 64$$ 8 4 ±8 -8 ±32 ±8 128 3. $$x^3 = 27$$ 4. $$x^3 = -64$$ ±3 ±9 81 192 -4 4 ±4 5. $$x^2 = \frac{49}{100}$$ $$x^2 = \frac{36}{16}$$ $$\frac{7}{100}$$ $$\frac{7}{10}$$ $$\pm \frac{7}{100} \qquad \pm \frac{7}{10}$$ $$\pm \frac{7}{10}$$ $$\frac{18}{8}$$ $$\pm \frac{6}{16}$$ $$\pm \frac{6}{4}$$ Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations # **Session 4: Guided Practice (Whole Group)** | | Write | Describe | |-----------|--------------------------------------|--| | 1. Solve: | $x^2 = 64$ | | | | $\sqrt{x^2} = \sqrt{64}$ | Took the square root of each side $\sqrt{x^2} = \underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | | | $x = \pm 8$ | Simplified each radical $\sqrt{64} = \sqrt{\underline{} \bullet \underline{} \text{ or } \sqrt{\underline{} \bullet \underline{}}$ | | 2. Solve: | $x^3 = -125$ | | | | $\sqrt[3]{x^3} = \sqrt[3]{-125}$ | Since $\sqrt{x^3} = \underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | | | x = -5 | Simplified each radical $\sqrt{-125} = \sqrt{\underline{} \bullet \underline{} \bullet \underline{} \bullet \underline{}$ | | 3. Solve: | $x^2 = \frac{36}{121}$ | | | | $\sqrt{x^2} = \sqrt{\frac{36}{121}}$ | Took the square root of each side $\sqrt{x^2} = \underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | | | $x = \pm \frac{6}{11}$ | Simplified each radical $\sqrt{\frac{36}{121}} = $ | | Name | Date | |------|------| |------|------| Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations ## **Session 4: Guided Practice (Pairs)** **Directions:** Solve each non-linear equation. 4. $$x^2 = 36$$ $$x^2 = 81$$ $$x^3 = 8$$ $$x^3 = -64$$ $$x^2 = \frac{49}{81}$$ $$x^3 = \frac{125}{27}$$ Algebra 1 – Readiness Standard 5 – 8.EE.2 square roots and cube roots **Readiness** for factoring quadratic equations #### Session 4: Guided Practice (Teacher Notes) | | Write | Describe | |-----------|--------------------------------------|---| | 1. Solve: | $x^2 = 64$ | | | | $\sqrt{x^2} = \sqrt{64}$ | Took the square root of each side $\sqrt{x^2} = \sqrt{x \cdot x} = x$ to eliminate the exponent | | | $x = \pm 8$ | Simplified each radical $\sqrt{64} = \sqrt{8 \cdot 8} \text{ or } \sqrt{-8 \cdot -8}$ | | 2. Solve: | $x^3 = -125$ | | | | $\sqrt[3]{x^3} = \sqrt[3]{-125}$ | Took the cube root of each side Since $\sqrt{x^3} = \sqrt{x \cdot x \cdot x} = x$ to eliminate the exponent | | | x = -5 | Simplified each radical $\sqrt{-125} = \sqrt{-5 \cdot -5}$ | | 3. Solve: | $x^2 = \frac{36}{121}$ | | | | $\sqrt{x^2} = \sqrt{\frac{36}{121}}$ | Took the square root of each side $\sqrt{x^2} = \sqrt{x \cdot x} = x$ to eliminate the exponent | | | $x = \pm \frac{6}{11}$ | Simplified each radical $ \sqrt{\frac{36}{121}} = \sqrt{\frac{6}{11} \cdot \frac{6}{11}} \text{ or } \sqrt{-\frac{6}{11} \cdot -\frac{6}{11}} $ | #### **Session 4: Self-Reflection** Algebra 1 - Readiness Standard 5 - 8.EE.2 **Learning Target:** I will solve non-linear equations using square roots and cube roots Briefly discuss student responses - ➤ What did I learn today about solving non-linear equations? - ➤ How confident do I feel about solving non-linear equations on my own? (*Thumbs up, down, or sideways*) # Algebra 1 Quick Check – Form D Readiness Standard 5 - 8.EE.2 Name_____ Date____ **Learning Target:** I will solve non-linear equations using square roots and cube roots. Directions: Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 49$$ $$x^2 = 81$$ 3. $$x^3 = -216$$ $$x^3 = 8$$ $$x^2 = \frac{25}{16}$$ $$x^2 = \frac{64}{81}$$ $$\pm \frac{5}{4}$$ $$\pm \frac{5}{16}$$ $$\pm \frac{8}{9}$$ $$\pm \frac{32}{81}$$ $$\frac{8}{81}$$ #### Algebra 1 Quick Check – Form E Readiness Standard 5 - 8.EE.2 | Name | Date | |------|------| | | | **Learning Target:** I will solve non-linear equations using square roots and cube roots. Directions: Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 9$$ $$x^2 = 36$$ 18 3. $$x^3 = 125$$ $$x^3 = -27$$ $$x^2 = \frac{16}{36}$$ $$x^2 = \frac{81}{49}$$ $$\frac{4}{6}$$ $$\pm \frac{4}{6}$$ $$\pm \frac{8}{18}$$ $$\frac{9}{49}$$ $$\pm \frac{9}{49}$$ ## Algebra 1 Quick Check – Form F Readiness Standard 5 - 8.EE.2 | Name | Date | |------|------| | | | **Learning Target:** I will solve non-linear equations using square roots and cube roots. Directions: Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 100$$ $$x^2 = 25$$ ±50 3. $$x^3 = -8$$ $$x^3 = 216$$ 72 $$x^2 = \frac{64}{25}$$ $$x^2 = \frac{9}{36}$$ $$-\frac{8}{25}$$ $$\pm \frac{8}{5}$$ $$\pm \frac{32}{12.5}$$ $$\pm \frac{3}{36}$$ $$\frac{3}{18}$$ $$\pm \frac{3}{6}$$ #### Algebra 1 Quick Check - Form G Readiness Standard 5 - 8.EE.2 Name_____ Date____ **Learning Target:** I will solve non-linear equations using square roots and cube roots. Directions: Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 16$$ 2. $$x^2 = 64$$ 128 3. $$x^3 = 27$$ 4. $$x^3 = -64$$ 3 ±3 ±9 81 192 -4 4 ±4 5. $$x^2 = \frac{49}{100}$$ 6. $$x^2 = \frac{36}{16}$$ $$\frac{7}{100}$$ $$\frac{7}{10}$$ $$\pm \frac{7}{100}$$ $$\pm \frac{7}{10}$$ $$\frac{18}{8}$$ $$\pm \frac{6}{16}$$ $$\pm \frac{6}{4}$$ 6 4 #### Algebra 1 Quick Check – Form H Readiness Standard 5 - 8.EE.2 Name_____ Date____ **Learning Target:** I will solve non-linear equations using square roots and cube roots. **Directions:** Circle the solution to each equation. (Work time: 3 minutes) $$x^2 = 49$$ $$x^2 = 81$$ 98 -7 ± 98 ± 162 -9 <u>+</u>9 162 3. $$x^3 = -216$$ 4. $$x^3 = 8$$ -6 ± 6 -72 2 ±2 24 ± 24 5. $$x^2 = \frac{25}{16}$$ 6. $$x^2 = \frac{64}{81}$$ 5 4 $$\pm \frac{5}{4}$$ $$\pm \frac{5}{16}$$ $$\pm \frac{8}{9}$$ $$\pm \frac{32}{81}$$ $$\frac{8}{81}$$