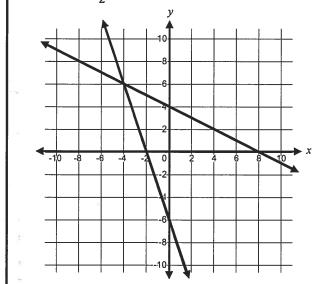
DELTA MATH MATH

Quick Check - Form A

Readiness Standard 1 - A.REI.6


Name Key

Date____

Learning Target: I will solve systems of equations.

Directions: Find the solution to each system of equations. (Work time: 5 minutes)

1.
$$y = -\frac{1}{2}x + 4$$
 and $y = -3x - 6$

2.
$$y = 3x$$
 and $y = 7x + 20$

$$3x = 7x + 20$$

$$-7x - 7x$$

$$-4x = 20$$

$$-4$$

$$X = -5$$

$$y = 3(-5)$$

 $y = -15$

Solution: (__5_,__15__)

3.
$$4x + y = 22$$
 and $2x - y = 8$

$$4x+y=22$$

$$2x-y=8$$

$$6x = 30$$

$$6$$

$$x=5$$

$$x$$
-coordinate of the solution: 5

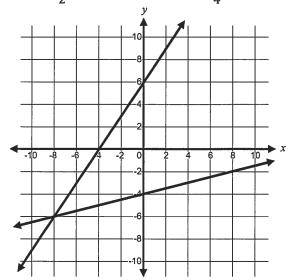
4.
$$x - 3y = -11$$
 and $-x + 7y = 31$

$$x - 3y = -11$$
 $-x + 7y = 31$
 $4y = 20$
 4
 4
 4
 4

y-coordinate of the solution: 5

Quick Check – Form B

Readiness Standard 1 - A.REI.6


Name Key

Date

Learning Target: I will solve systems of equations.

Directions: Find the solution to each system of equations. (Work time: 5 minutes)

1.
$$y = \frac{3}{2}x + 6$$
 and $y = \frac{1}{4}x - 4$

Solution:
$$(-8, -6)$$

$$y = -4x$$
 and $y = 8x + 24$

$$-4x = 8x + 24$$

$$-8x - 8x$$

$$-12x = 24$$

$$-12$$

$$x = -2$$

$$y = -4(-2)$$

 $y = 8$

Solution:
$$(-8, -6)$$
 Solution: $(-2, 8)$

3. $7x + y = 45$ and $-3x - y = -21$
4. $x - 3y = 15$ and $-x + 2y = 5$

$$7x+y=45$$
 $-3x-y=-21$
 $4x=24$
 $x=6$

$$x$$
-coordinate of the solution: 6

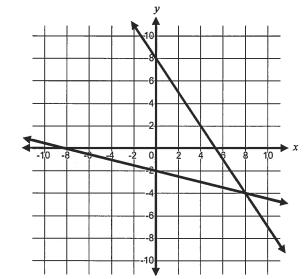
4.
$$x - 3y = 15$$
 and $-x + 2y = 5$

$$x-3y=15$$
 $-x+2y=5$
 $-y=20$
 -1
 $y=-20$

y-coordinate of the solution: -20

Quick Check - Form C

Readiness Standard 1 - A.REI.6


Name Key

Date____

Learning Target: I will solve systems of equations.

Directions: Find the solution to each system of equations. (Work time: 5 minutes)

1.
$$y = -\frac{3}{2}x + 8$$
 and $y = -\frac{1}{4}x - 2$

Solution: $(\underline{\$},\underline{-4})$

$$y = 4x \quad \text{and} \quad y = 6x - 12$$

$$\frac{4x = 6x - 12}{-6x - 6x}$$

$$\frac{-2x = -12}{-2}$$

$$y = 4(6)$$

 $y = 24$

Solution: (6, 24)

3.
$$5x + y = 14$$
 and $3x - y = 2$

$$5x+y=14$$
 $3x-y=2$
 $8x = 16$
 $8 = 2$

4.
$$-x - 4y = -22$$
 and $x + 6y = 32$

$$-X - 4y = -22$$

$$X + 6y = 32$$

$$2y = 10$$

$$2$$

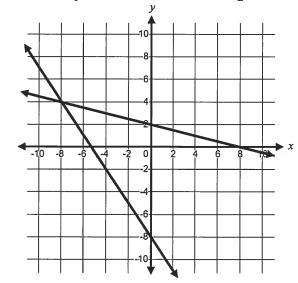
$$y = 5$$

x-coordinate of the solution: $\underline{2}$

y-coordinate of the solution: 5

Quick Check – Form D

Readiness Standard 1 - A.REI.6


Name Key

Date

Learning Target: I will solve systems of equations.

Directions: Find the solution to each system of equations. (Work time: 5 minutes)

1.
$$y = -\frac{1}{4}x + 2$$
 and $y = -\frac{3}{2}x - 8$

$$y = -3x$$
 and $y = 5x + 24$

$$-3x = 5x + 24$$

$$-5x - 5x$$

$$-8x = 24$$

$$-8 = -8$$

$$x = -3$$

$$y = -3(-3)$$

 $y = 9$

Solution: $(\underline{-3},\underline{9})$

3.
$$3x + y = -10$$
 and $-5x - y = 18$ 4. $-x + 3y = 2$ and $x + 5y = 22$

$$3x+y=-10 \\
-5x-y=18 \\
-2x=8 \\
-2$$

$$x=-4$$

x-coordinate of the solution:
$$-4$$

4.
$$-x + 3y = 2$$
 and $x + 5y = 22$

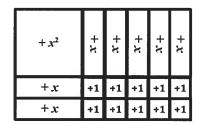
$$-X + 3y = 2$$
 $X + 5y = 22$
 $8y = 24$
 $8 = 3$

y-coordinate of the solution: 3

Quick Check – Form A

Readiness Standard 2 - A.SSE.3a

Name Keu


Date

Learning Target: I will factor quadratic expressions to reveal the zeros of a function.

Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

1. The area model below represents the expression $x^2 + 7x + 10$.

What are the factors of the expression?

Factors: (x+5) and (x+2)

2. Factor the expression.

$$x^{2} + 2x - 15$$

$$2 \neq -1 \quad 15$$

$$2 \neq 1 \quad -15$$

$$2 \neq 1 \quad -15$$

$$2 \neq 1 \quad -15$$

$$2 \neq 3 \quad -5$$

$$- \times -1 \quad -1 \quad -1 \quad -1 \quad -1$$

$$- \times -1 \quad -1 \quad -1 \quad -1$$

Factors: (x+5) and (x-3)

3. Find the zeros of the function.

$$f(x) = x^2 + 2x - 15$$

$$D = (x+5)(x-3)$$

$$0 = X + 5$$
 $-5 - 5$

$$\frac{+3}{3} = X$$

$$(-5,0)$$
 $(3,0)$

4. Find the zeros of the function.

$$f(x) = x^2 + 7x + 10$$

$$0 = (x+5)(x+2)$$

Zeros: (-5,0) and (3,0)

Zeros: (-5,0) and (-2,0)

Quick Check – Form B

Readiness Standard 2 - A.SSE.3a

Date

Learning Target: I will factor quadratic expressions to reveal the zeros of a function.

Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

1. The area model below represents the expression $x^2 + 8x + 12$. What are the factors of the expression?

+ x ²	+ <i>x</i>	+ <i>x</i>	+ <i>x</i> +	+ <i>x</i>	+x
+x	+1	+1	+1	+1	+1
+x	+1	+1	+1	+1	+1
+ x	+1	+1	+1	+1	+1

Factors: (x+3) and (x+4)

2. Factor the expression.

$$x^{2} + 4x - 12$$

$$\begin{vmatrix} & & & & \\ & & &$$

$$(x+6)(x-2)$$

Factors: (x+6) and (x-2)

3. Find the zeros of the function.

$$f(x) = x^2 + 4x - 12$$

$$O = (x+6)(x-2)$$

$$0 = X - 2$$

$$(-6,0)$$

(2,0)

4. Find the zeros of the function.

$$f(x) = x^2 + 10x + 16$$

$$0 = (x+8)(x+2)$$

$$0 = x + 8$$
 $0 = x + 2$

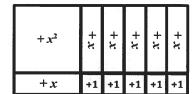
$$(-8,0)$$
 $(-2,0)$

Zeros: (-6,0) and (2,0)

Zeros: (-8,0) and (-2,0)

Quick Check – Form C

Readiness Standard 2 - A.SSE.3a


Name Kuy

Date

Learning Target: I will factor quadratic expressions to reveal the zeros of a function.

Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

1. The area model below represents the expression $x^2 + 6x + 5$. What are the factors of the expression?

2. Factor the expression.

$$x^2 - 2x - 15$$

Factors: (X+1) and (x+5)

Factors: (x-5) and (x+3)

3. Find the zeros of the function.

$$f(x) = x^2 - 2x - 15$$

$$0 = (x-5)(x+3)$$

4. Find the zeros of the function.

$$f(x) = x^2 + 8x + 12$$

$$0 = (x+6)(x+2)$$

Zeros: (5,0) and (-3,0)

Zeros: (-6,0) and (-2,0)

Quick Check – Form D

Readiness Standard 2 - A.SSE.3a

Name Key

Date

Learning Target: I will factor quadratic expressions to reveal the zeros of a function.

Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

- 1. The area model below represents the expression $x^2 + 5x + 6$. What are the factors of the expression?
 - $+x^2$ +x+x

Factors: (x+3) and (x+2)

2. Factor the expression.

$$x^2 - 4x - 12$$

Factors: (X-6) and (X+2)

3. Find the zeros of the function.

$$f(x) = x^2 - 4x - 12$$

$$0 = (x-6)(x+2)$$

(0,0)

$$-2 = \times$$
 $(-2,0)$

Zeros:
$$(6,0)$$
 and $(-2,0)$

4. Find the zeros of the function.

$$f(x) = x^2 + 9x + 18$$

$$0 = (x+6)(x+3)$$

$$-6 = X$$

$$-3=x$$

$$(-3,0)$$

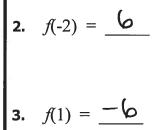
Zeros: (-6,0) and (-3,0)

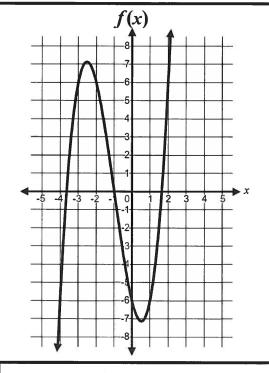
Quick Check – Form A

Readiness Standard 3 - F.IF.2

Name Key

Date


Learning Target: I will evaluate linear and non-linear functions.


Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

Use the graph to find each value of f(x).

1.
$$f(0) = -6$$

2.
$$f(-2) = 6$$

4. For the function g(x) = x + 5, find the value of g(-3).

$$g(-3) = -3+5$$

 $g(-3) = 2$

5. For the function $h(x) = x^2 - 6$, find the value of h(-4).

$$h(-4) = (-4)^2 - 6$$

$$= 16 - 6$$

$$= 10$$

Answer: <u>10</u>

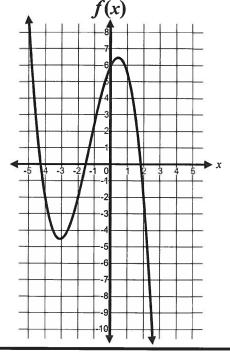
Quick Check – Form B

Readiness Standard 3 - F.IF.2

Name Key

Date

Learning Target: I will evaluate linear and non-linear functions.


Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

Use the graph to find each value of f(x).

1.
$$f(0) = 6$$

1.
$$f(0) = 6$$

2. $f(2) = 72$

3.
$$f(-4) = -2$$

4. For the function g(x) = x - 6, find the value of g(4).

$$g(4) = 4-6$$

= -2

5. For the function $h(x) = x^2 + 7$, find the value of h(-5).

$$h(-5) = (-5)^2 + 7$$

= 25+7
= 32

Answer: <u>32</u>

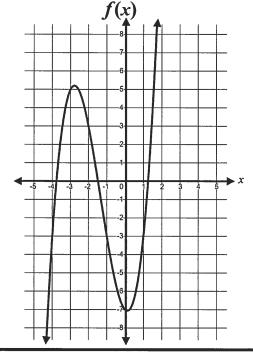
Quick Check - Form C

Readiness Standard 3 - F.IF.2

Name Key

Date

Learning Target: I will evaluate linear and non-linear functions.


Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

Use the graph to find each value of f(x).

1.
$$f(0) =$$

2.
$$f(-3) = 5$$

3.
$$f(1) = -3$$

4. For the function g(x) = x + 7, find the value of g(-2).

$$g(-2) = -2 + 7$$

= 5

5. For the function $h(x) = x^2 - 8$, find the value of h(-6).

$$h(-6) = (-6)^{2} - 8$$

$$= 36 - 8$$

$$= 28$$

Answer: 5

Answer: 28

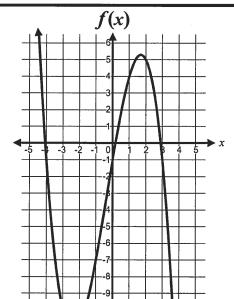
Quick Check - Form D

Readiness Standard 3 - F.IF.2

Name Key

Date____

Learning Target: I will evaluate linear and non-linear functions.


Directions: Circle the answer(s) to each question. (Work time: 4 minutes)

Use the graph to find each value of f(x).

1.
$$f(0) = -1$$

2.
$$f(1) = 4$$

3.
$$f(-2) = -11$$

4. For the function g(x) = x - 8, find the value of g(5).

$$g(5)=5-8$$

= -3

5. For the function $h(x) = x^2 + 9$, find the value of h(-7).

$$h(-7) = (-7)^{2} + 9$$

= $49 + 9$
= 58

Answer: -3

Answer: <u>58</u>

Quick Check - Form A

Readiness Standard 4 - F.LE.1

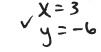
Name_	Key
_	1

Date_____

Learning Target: I will determine if a function is linear or non-linear. (Work time: 4 minutes)

1. Given the function provided in the table, circle the answer choice that makes the statement true.

x	0	1	2	3 /	5
f(x)	1	3	5	7	9


"The function represented in the table is _____

missing

- linear because the values of x and f(x) always change at a constant rate
- linear because the values of x and f(x) do not always change at a constant rate
- non-linear because the values of x and f(x) always change at a constant rate
- non-linear because the values of x and f(x) do not always change at a constant rate
- **2.** Given the function provided in the table, circle the answer choice that makes the statement true.

x	-1	0	1	2	4
g(x)	6	3	0	-3	-9

"The function represented in the table is _____.

- linear because the values of x and g(x) always change at a constant rate
 - linear because the values of x and g(x) do not always change at a constant rate
 - non-linear because the values of x and g(x) always change at a constant rate
- non-linear because the values of x and g(x) do not always change at a constant rate
- **3.** Circle all of the linear functions.

$$f(x) = x^3 + 4$$
 $g(x) = 3x + 4$ $h(x) = 3^x + 4$ $k(x) = x$

$$p(x) = x^2 + 7$$
 $q(x) = 2x + 7$ $r(x) = 2^x + 7$ $t(x) = x$

Quick Check – Form B

Readiness Standard 4 - F.LE.1

Name_	Key
_	

Date____

Learning Target: I will determine if a function is linear or non-linear. (Work time: 4 minutes)

1. Given the function of f(x) provided in the table, circle the answer choice that makes the statement true.

x	0	1	2	3	5
f(x)	8	6	4	2	0

x=4 yo

"The function represented in the table is ______.

- linear because the values of x and f(x) do not always change at a constant rate
- linear because the values of x and f(x) always change at a constant rate
- \bigcirc non-linear because the values of x and f(x) do not always change at a constant rate
- non-linear because the values of x and f(x) always change at a constant rate
- **2.** Given the function of f(x) provided in the table, circle the answer choice that makes the statement true.

x	-1	0	1	2	4
f(x)	2	4	6	8	10

x=3 y=10 ^{NO}

"The function represented in the table is _____."

- on non-linear because the values of x and g(x) do not always change at a constant rate
- non-linear because the values of x and g(x) always change at a constant rate
- linear because the values of x and g(x) do not always change at a constant rate
- linear because the values of x and g(x) always change at a constant rate
- 3. Circle all of the linear functions.

$$f(x) = 4x + 5$$

$$g(x) = x^4 + 5$$

$$h(x) = x$$

$$k(x) = 4^x + 5$$

$$\overbrace{p(x) = x^2 + 3}$$

$$g(x) = 2x + 3$$

$$r(x) = 2^x + 3$$

$$t(x) = x$$

Quick Check – Form C

Readiness Standard 4 - F.LE.1

Name	Key
_	0

Date

Learning Target: I will determine if a function is linear or non-linear. (Work time: 4 minutes)

1. Given the function of f(x) provided in the table, circle the answer choice that makes the statement true.

x	0	1	2	3	5
f(x)	-4	0	4	8	16

"The function represented in the table is _____

- linear because the values of x and f(x) do not always change at a constant rate
- () linear because the values of x and f(x) always change at a constant rate
- non-linear because the values of x and f(x) always change at a constant rate
- non-linear because the values of x and f(x) do not always change at a constant rate
- **2.** Given the function of f(x) provided in the table, circle the answer choice that makes the statement true.

x	-2	-1	0	1	4
f(x)	-4	0	4	8	20

"The function represented in the table is _____

- non-linear because the values of x and g(x) do not always change at a constant rate
- non-linear because the values of x and g(x) always change at a constant rate
- linear because the values of x and g(x) do not always change at a constant rate
- (•) linear because the values of x and g(x) always change at a constant rate
- 3. Circle all of the linear functions.

$$f(x) = x^3 + 4$$

$$g(x) = 3x + 4$$

$$h(x) = x$$

$$k(x) = 3^x + 4$$

$$p(x) = 2x + 7 \qquad q(x) = x$$

$$a(x) = x$$

$$r(x) = x^2 + 7$$

$$t(x) = 2^x + 7$$

Quick Check – Form D

Readiness Standard 4 - F.LE.1

Name	Key
_	0

Date

Learning Target: I will determine if a function is linear or non-linear. (Work time: 4 minutes)

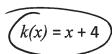
1. Given the function of f(x) provided in the table, circle the answer choice that makes the statement true.

x	-1	0	1	2	4
f(x)	-5	-3	-1	1	3

"The function represented in the table is _____

- non-linear because the values of x and f(x) always change at a constant rate
- () non-linear because the values of x and f(x) do not always change at a constant rate
- linear because the values of x and f(x) always change at a constant rate
- linear because the values of x and f(x) do not always change at a constant rate
- **2.** Given the function of f(x) provided in the table, circle the answer choice that makes the statement true.

x	0	1	2	3	5
f(x)	5	3	1	-1	-5


"The function represented in the table is _____

- non-linear because the values of x and g(x) always change at a constant rate
- non-linear because the values of x and g(x) do not always change at a constant rate
- (•) linear because the values of x and g(x) always change at a constant rate
- linear because the values of x and g(x) do not always change at a constant rate
- 3. Circle all of the linear functions.

$$f(x) = 4^x + 5$$

$$g(x) = 4x$$

$$h(x) = x^4 + 5$$

$$\overbrace{p(x) = x^2 + 6}$$

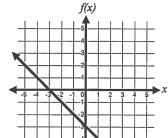
$$q(x) = 2x + 6 \qquad r(x) = x + 6$$

$$r(x) = x + 6$$

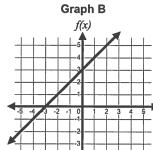
$$t(x) = 2^x$$

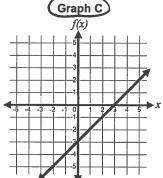
Quick Check - Form A

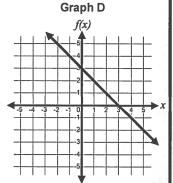
Readiness Standard 5 - A.CED.2


Name Key

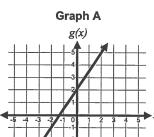
Date____

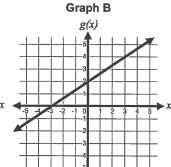

Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)

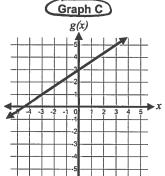

1. The function f(x) = x - 3 could be represented by which graph?

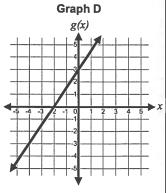


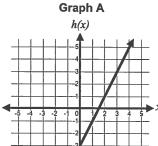
Graph A

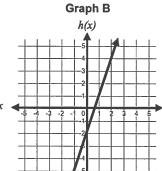


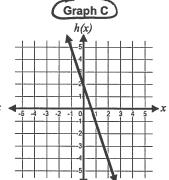


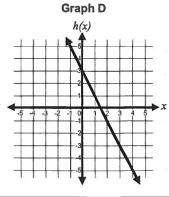



2. The function $g(x) = \frac{2}{3}x + 3$ could be represented by which graph?



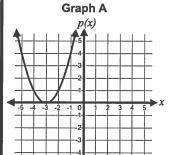


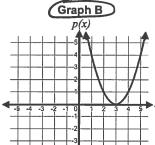


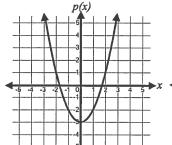

3. The function h(x) = -3x + 2 could be represented by which graph?

Quick Check - Form A

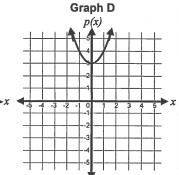
Readiness Standard 5 - A.CED.2 (Continued)

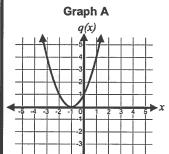

Name Key

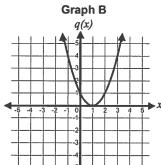

Date____

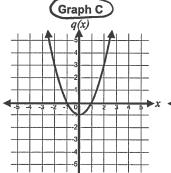

Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)

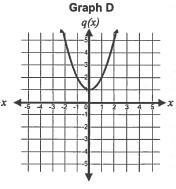
4. The function $p(x) = (x-3)^2$ could be represented by which graph?


4. B

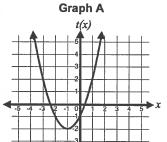


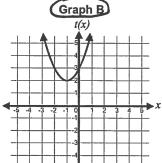

Graph C

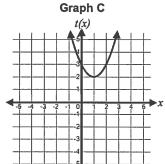


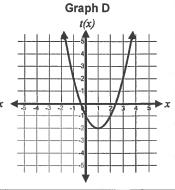

5. The function $q(x) = x^2 - 1$ could be represented by which graph?

5. <u>C</u>





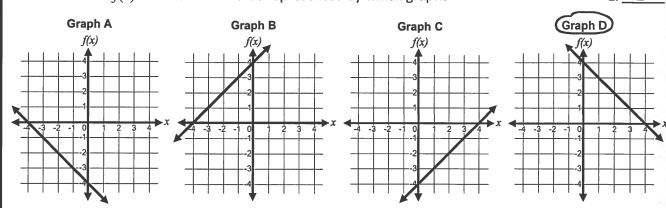



6. The function $t(x) = (x + 1)^2 + 2$ could be represented by which graph?

6. <u>B</u>

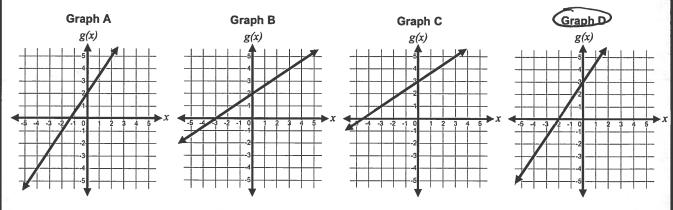
Quick Check - Form B

Readiness Standard 5 - A.CED.2

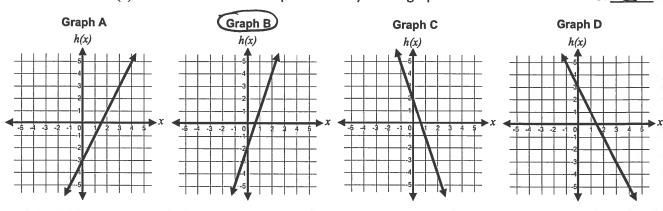

Name Key

Date____

Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)


1. The function f(x) = -x + 4 could be represented by which graph?

1. D

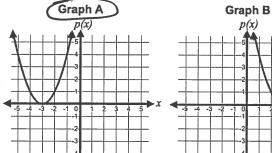

2. The function $g(x) = \frac{3}{2}x + 3$ could be represented by which graph?

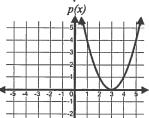
2. <u>D</u>

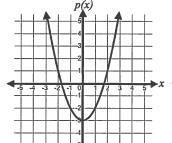
3. The function h(x) = 3x - 2 could be represented by which graph?

3. <u>B</u>

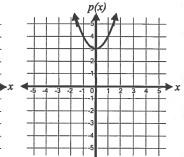
Quick Check - Form B

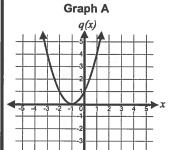

Readiness Standard 5 - A.CED.2 (Continued)

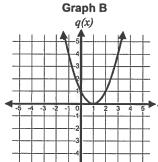

Name Key

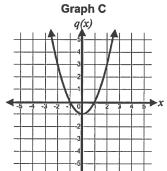

Date

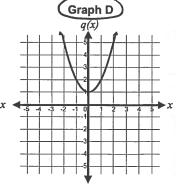
Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)


4. The function $p(x) = (x + 3)^2$ could be represented by which graph?

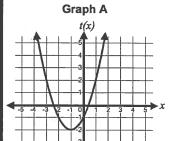


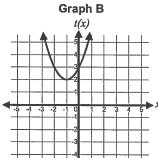

Graph C

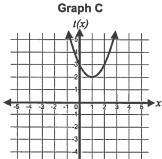


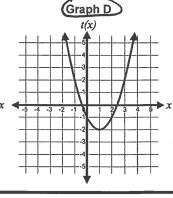

Graph D

5. The function $q(x) = x^2 + 1$ could be represented by which graph?







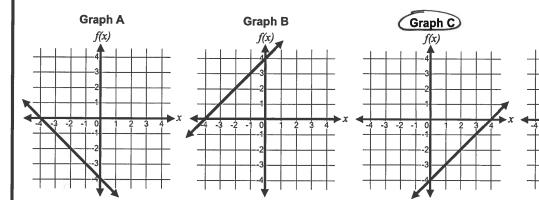


6. The function $t(x) = (x-1)^2 - 2$ could be represented by which graph?

Quick Check - Form C

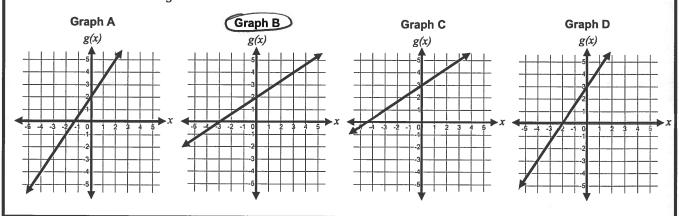
Readiness Standard 5 - A.CED.2

Name Key

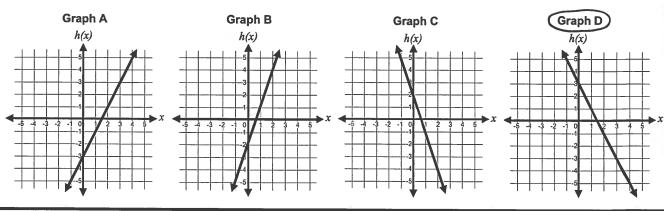

Date____

Graph D

Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)


1. The function f(x) = x - 4 could be represented by which graph?

1. C


2. The function $g(x) = \frac{2}{3}x + 2$ could be represented by which graph?

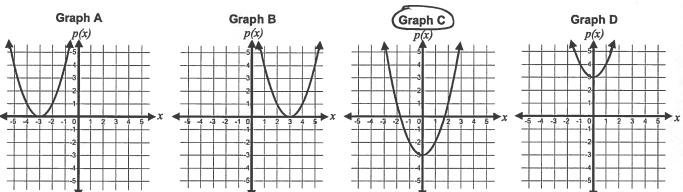
2. B

3. The function h(x) = -2x + 3 could be represented by which graph?

3. D

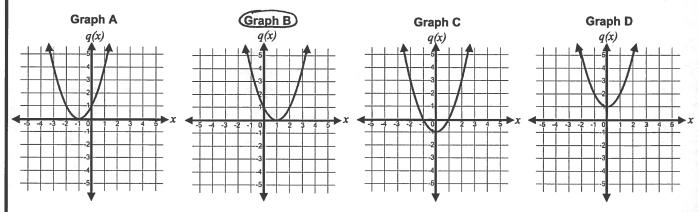
Quick Check – Form C

Readiness Standard 5 - A.CED.2 (Continued)

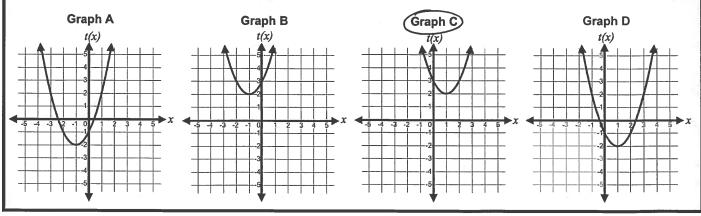

Name Key

Date____

Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)


4. The function $p(x) = x^2 - 3$ could be represented by which graph?

4. <u>C</u>


5. The function $q(x) = (x - 1)^2$ could be represented by which graph?

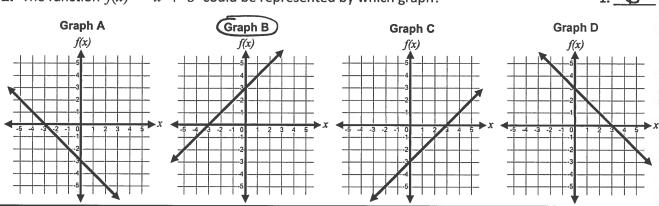
5. <u>B</u>

6. The function $t(x) = (x-1)^2 + 2$ could be represented by which graph?

6. _____

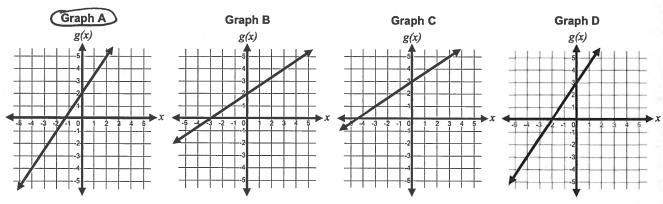
Quick Check - Form D

Readiness Standard 5 - A.CED.2

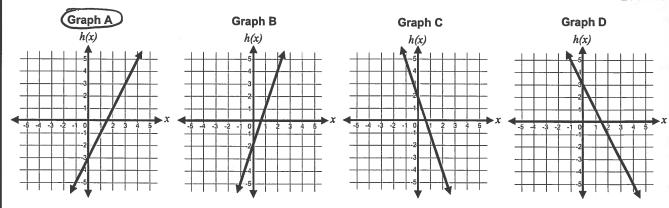

Name Key

Date____

Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)


1. The function f(x) = -x + 3 could be represented by which graph?

1._B


2. The function $g(x) = \frac{3}{2}x + 2$ could be represented by which graph?

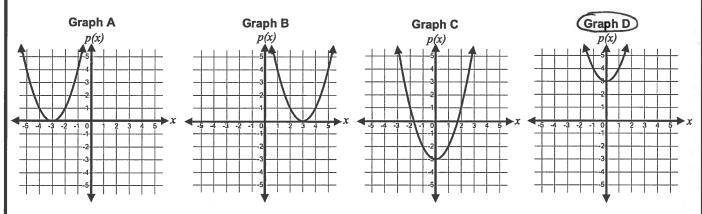
2. <u>A</u>

3. The function h(x) = 2x - 3 could be represented by which graph?

3. <u>A</u>

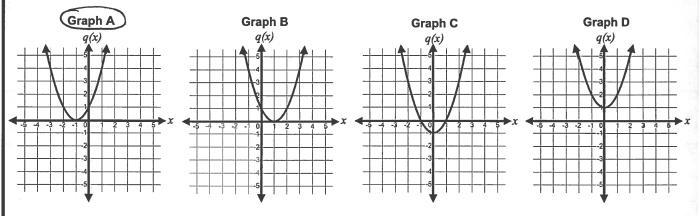
Quick Check - Form D

Readiness Standard 5 - A.CED.2 (Continued)

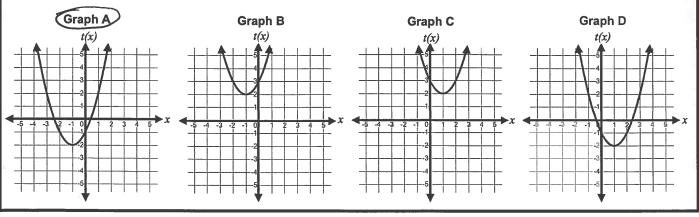

Name Key

Date____

Learning Target: I will identify the graph of linear and non-linear functions. (Work time: 5 minutes)


4. The function $p(x) = x^2 + 3$ could be represented by which graph?

4. D


5. The function $q(x) = (x + 1)^2$ could be represented by which graph?

5. A

6. The function $t(x) = (x + 1)^2 - 2$ could be represented by which graph?

6. A

